激光写光电子学进展

阵列虚拟相机三维重建研究

李安虎*,罗文杰,刘兴盛,邓兆军

同济大学机械与能源工程学院,上海 201804

摘要 针对目标场景三维重建难以兼顾视场范围和空间分辨率的问题,提出了结合相机和旋转双棱镜的成像系统。该 系统可在不同双棱镜转角下形成虚拟相机阵列,同时利用导轨移动调整阵列虚拟相机的成像位置,还可在大视场范围内 实现分区域的多视角图像采集。结合相机投影模型和双棱镜折射模型,提出了一种利用几何变换关系的阵列虚拟相机 内外参数标定方法,建立了基于三角测量原理的分区域三维点云获取方法。在此基础上,提出了多视角图像重叠区域的 预先定位算法,结合迭代最近邻点算法实现由粗到精的分区域点云配准融合。实验结果表明,所提成像系统可以实现大 范围高分辨率的三维目标重建,且采用由粗到精的点云配准算法,在提升运算效率的同时还能保证三维重建精度。

关键词 三维重建;虚拟相机;旋转双棱镜;点云配准

中图分类号 TH74 **文献标志码** A

DOI: 10.3788/LOP202259.1415013

3D Reconstruction of Array Virtual Camera

Li Anhu^{*}, Luo Wenjie, Liu Xingsheng, Deng Zhaojun

School of Mechanical Engineering, Tongji University, Shanghai 201804, China

Abstract In this study, an imaging system combining cameras and rotating Risley prisms is proposed to address the difficulty of considering the field of view and spatial resolution in a target scene's three-dimensional (3D) reconstruction. The imaging system can form a virtual camera array under different Risley prism rotation angles, adjust the array virtual cameras' imaging position using rail movement, and realize a subregional multiview image acquisition in a large field of view. A calibration approach of the array virtual camera's internal and external parameters using a geometrical transformation relationship is proposed, and the subregional 3D point cloud acquisition approach based on the triangulation principle is established, employing the camera projection model and the double-prism refraction model. A prelocalization approach for overlapping regions of multiview pictures is presented on this basis, and a coarse-to-precise subregional point cloud alignment fusion is obtained by integrating the iterative closest neighbor algorithm. The experimental results reveal that the proposed imaging system can achieve largescale and high-resolution 3D target reconstruction and can ensure a 3D reconstruction accuracy due to the coarse-to-precise point cloud alignment approach while enhancing processing efficiency. **Key words** three-dimensional reconstruction; virtual camera; rotating Risley prisms; point cloud registration

1引言

三维重建技术能够获取环境物体的准确三维信息,建立空间三维模型,众多学者对其在同步定位与建图(SLAM)^[1-2]、自动驾驶^[3]、机器人导引^[4]、室内环境重建^[5]等领域的应用进行了深入的研究。目前市场上成熟的三维成像设备包括深度相机、激光雷达等,这些设备的单次采集视场通常较小,无法同时兼顾大视场范围和高分辨率这两个指标。针对三维重建中兼顾大视场和高分辨的需求,实际应用中主要通过多视角、多位

置采集的方式解决,例如相机阵列、相机运动等方法。 许多学者对这些方法进行了细致的研究,吴越^[6]研究 了阵列相机多视角成像的图像超分辨重建、深度估计 等问题;任国印等^[7]基于多摄像机系统开发了一套多 人脸实时跟踪系统;刘宇^[8]通过同步相机阵列对进行 人体动作捕捉,实现人体模型重建;陈展翩等^[9]通过移 动单目相机进行多视角采集,结合运动恢复结构方法 对建筑进行了大范围重建;李良福等^[10]利用无人机对 桥梁进行多视图采集,结合多分辨率网络,提出了一种 具有较高空间精确度的桥梁裂缝检测方法。

先进成像

收稿日期: 2022-03-30; 修回日期: 2022-05-03; 录用日期: 2022-05-11 通信作者: ^{*}lah@tongji.edu.cn

以上方法中多相机系统普遍占用体积较大,相机 间标定步骤繁琐;而相机运动方法的三维重建精度受 运动相机位置估计精度的限制。因此本文采用结构紧 凑的旋转双棱镜结合相机实现多视角图像的采集,同 时利用旋转双棱镜优良的视轴调整精度,实现阵列相 机间的位置估计。针对阵列相机的多视角图像采集与 处理问题,本课题组^[11]进行了相关研究,提出结合相机 与单棱镜的动态虚拟相机成像原理,通过单棱镜实现 单相机的多视角图像采集与三维重建。此外Li等^[12] 研究了基于旋转双棱镜的图像拼接问题,提出了预定 位图像拼接方法。基于上述研究,本文提出了阵列虚 拟相机成像系统,通过旋转双棱镜的转角组合获得虚 拟相机阵列,实现单相机多视角图像采集,同时结合直 线导轨移动虚拟相机阵列,对空间大视场实现分区域 的多视角图像采集;基于三角测量原理,对分区域采集

第 59 卷 第 14 期/2022 年 7 月/激光与光电子学进展

的多视角图像进行局部区域的三维重建;同时提出了 多视角图像重叠区域的预先定位算法,结合迭代最近 邻点算法实现由粗到精的分区域点云配准融合。

2 阵列虚拟相机三维重建原理

2.1 基本原理

本系统组成包括工业相机、旋转双棱镜和直线导轨,通过结合相机和旋转双棱镜的成像系统,可以在不同双棱镜转角组合下组成虚拟相机阵列,实现单位置的多视角图像采集;同时借助直线导轨,移动成像系统,可以得到若干组虚拟相机阵列。相邻的虚拟相机阵列可以依据三角测量原理,对相同双棱镜转角下采集的两幅图像进行双目重建,获得和阵列虚拟相机数量相同的若干局部三维点云。实验系统模型如图1 所示。

图 1 实验系统模型 Fig. 1 Experimental system model

图 1 中, $C_1 \sim C_n$ 表示导轨平移成像系统后的位置, $C_{v1} \sim C_{vi}$ 表示单个位置处通过不同旋转双棱镜角度组 合获得的虚拟相机阵列;矩形区域 $1-i \sim n-i$ 表示不 同导轨位置第 i组双棱镜转角组合的系统成像区域, 即为阵列虚拟相机 C_{vi} 的成像区域。相邻的矩形区域 x-i n(x+1)-i可以依据三角测量原理进行双目重 建,获得局部点云,通过改变双棱镜转角组合进行多视 角采集,最终可以获得一组点云阵列。

2.2 旋转双棱镜成像模型

旋转双棱镜视轴调整正向模型^[13]示意图如图 2 所示。

沿Z_p方向,设棱镜1入射面的单位法向矢量为N₁,

图 2 旋转双棱镜模型 Fig. 2 Rotating Risley prism model

<mark>第 59 卷 第 14 期/2022 年 7 月/激光与光电子学进展</mark>

$$N_4 = (0, 0, 1)^{\mathrm{T}},$$
 (4)

棱镜1出射面的单位法向矢量为 N_2 ,棱镜2入射面的 单位法向矢量为 N_3 ,棱镜2出射面的单位法向矢量为 N_4 ,则

$$N_1 = (0, 0, 1)^{\mathrm{T}},$$
 (1)

$$N_2 = \left(\sin\theta_1 \sin\alpha, -\cos\theta_1 \sin\alpha, \cos\alpha\right)^{\mathrm{T}}, \quad (2)$$

$$N_3 = (-\sin\theta_2 \sin\alpha, \cos\theta_2 \sin\alpha, \cos\alpha)^2, \quad (3)$$

式中: θ_1 为棱镜1的转角; θ_2 为棱镜2的转角; α 为棱镜 楔角。设棱镜1入射面的折射光线的单位矢量为 A_1 , 入射点 M_1 ;棱镜1出射面的折射光线的单位矢量为 A_2 ,出射点为 M_2 ;棱镜2入射面的折射光线的单位矢量 为 A_3 ,入射点为 M_3 ;棱镜2出射面的折射光线的单位 矢量为 A_4 ,出射点为 M_4 。根据光线折射定律,可得

$$\boldsymbol{A}_{1} = \frac{1}{n_{p}} \boldsymbol{A}_{0} + \left\{ \sqrt{1 - \left(\frac{1}{n_{p}}\right)^{2} \cdot \left[1 - \left(\boldsymbol{A}_{0}^{\mathrm{T}} \cdot \boldsymbol{N}_{1}\right)^{2}\right]} - \frac{1}{n_{p}} \boldsymbol{A}_{0}^{\mathrm{T}} \cdot \boldsymbol{N}_{1} \right\} \cdot \boldsymbol{N}_{1} = \left(X_{A_{1}}, Y_{A_{1}}, Z_{A_{1}}\right)^{\mathrm{T}},$$
(5)

$$\boldsymbol{A}_{2} = n_{\mathrm{p}}\boldsymbol{A}_{1} + \left\{ \sqrt{1 - n_{\mathrm{p}}^{2} \cdot \left[1 - \left(\boldsymbol{A}_{1}^{\mathrm{T}} \cdot \boldsymbol{N}_{2}\right)^{2}\right]} - n_{\mathrm{p}}\boldsymbol{A}_{1}^{\mathrm{T}} \cdot \boldsymbol{N}_{2} \right\} \cdot \boldsymbol{N}_{2} = \left(X_{\boldsymbol{A}_{2}}, Y_{\boldsymbol{A}_{2}}, Z_{\boldsymbol{A}_{2}}\right)^{\mathrm{T}}, \tag{6}$$

$$\mathbf{A}_{3} = \frac{1}{n_{\mathrm{p}}} \mathbf{A}_{2} + \left\{ \sqrt{1 - \left(\frac{1}{n_{\mathrm{p}}}\right)^{2} \cdot \left[1 - \left(\mathbf{A}_{2}^{\mathrm{T}} \cdot \mathbf{N}_{3}\right)^{2}\right]} - \frac{1}{n_{\mathrm{p}}} \mathbf{A}_{2}^{\mathrm{T}} \cdot \mathbf{N}_{3} \right\} \cdot \mathbf{N}_{3} = \left(X_{A_{3}}, Y_{A_{3}}, Z_{A_{3}}\right)^{\mathrm{T}},$$
(7)

$$\boldsymbol{A}_{4} = n_{\mathrm{p}}\boldsymbol{A}_{3} + \left\{ \sqrt{1 - n_{\mathrm{p}}^{2} \cdot \left[1 - \left(\boldsymbol{A}_{3}^{\mathrm{T}} \cdot \boldsymbol{N}_{4}\right)^{2}\right]} - n_{\mathrm{p}}\boldsymbol{A}_{3}^{\mathrm{T}} \cdot \boldsymbol{N}_{4} \right\} \cdot \boldsymbol{N}_{4} = \left(X_{A_{4}}, Y_{A_{4}}, Z_{A_{4}}\right)^{\mathrm{T}},$$
(8)

式中: n_p 为棱镜的折射率。依据给定的入射向量 A_0 和 入射点 M_1 ,可以计算得到出射向量 A_4 和与成像深度 D_2 处面的交点P,可以计算出射向量 A_4 的俯仰角 ρ 和方 位角 φ ,表达式分别为

$$\rho = \arccos\left(Z_{A_{i}} / \sqrt{X_{A_{i}}^{2} + Y_{A_{i}}^{2} + Z_{A_{i}}^{2}}\right), \qquad (9)$$

$$\varphi = \begin{cases} \arccos\left(X_{A_{4}} / \sqrt{X_{A_{4}}^{2} + Y_{A_{4}}^{2}}\right), & Y_{A_{4}} \ge 0\\ 2\pi - \arccos\left(X_{A_{4}} / \sqrt{X_{A_{4}}^{2} + Y_{A_{4}}^{2}}\right), & Y_{A_{4}} < 0 \end{cases}$$
(10)

2.3 相邻阵列虚拟相机参数标定方法

由于虚拟相机与实际相机间存在旋转和平移变换,事先标定的相邻实际相机间的外部位置参数并不 能直接作为相邻阵列虚拟相机间的外部位置参数,需 要结合虚拟相机和实际相机间的坐标转换矩阵进行标 定参数校正。

设相邻导轨位置处的实际相机为 $C_1 和 C_2$,通过事 先标定实际相机间的位置关系,可以获取 $C_1 和 C_2$ 间的 坐标转换矩阵(\mathbf{R}, \mathbf{T})。设 $C_1 \ C_2$ 通过旋转双棱镜进行 视轴调整后的等效虚拟相机为 $C_{v1} \ C_{v2}$,画出相邻阵列 虚拟相机空间点成像示意图,如图 3所示。下面推导 相邻阵列虚拟相机间的位置关系(\mathbf{R}', \mathbf{T}')。

设实际相机坐标系下的空间点P的坐标为 P_1 和 P_2 ,有以下关系

$$\boldsymbol{P}_1 = \boldsymbol{R} \boldsymbol{P}_2 + \boldsymbol{T}_{\circ} \tag{11}$$

设虚拟相机与实际相机间的对应转换关系为 (**R**_{v1}, **T**_{v1})、(**R**_{v2}, **T**_{v2}),则点**P**在虚拟相机坐标系下的坐 标**P**_{v1}和**P**_{v2}可以表示为

$$\begin{cases} \boldsymbol{P}_{v1} = \boldsymbol{R}_{v1} \boldsymbol{P}_{1} + \boldsymbol{T}_{v1} \\ \boldsymbol{P}_{v2} = \boldsymbol{R}_{v2} \boldsymbol{P}_{2} + \boldsymbol{T}_{v2}^{\circ} \end{cases}$$
(12)

图 3 相邻阵列虚拟相机空间点成像示意图 Fig. 3 Spatial point imaging diagram of adjacent array virtual cameras

结合式(11)和式(12),可以计算出相邻阵列虚拟 相机的坐标转换关系:

 $P_{v1} = R_{v1}RR_{v2}^{-1}P_{v2} + R_{v1}T + T_{v1} - R_{v1}RR_{v2}^{-1}T_{v2o}$ (13) 在本实验过程中,总是采用相同视轴调整角的相 邻 虚 拟相机进行 三维重建,因此有 $R_{v1} = R_{v2} = R_{v}$, $T_{v1} = T_{v2} = T_{v}$,简化式(13),得

 $P_{v1} = R_v R R_v^{-1} P_{v2} + R_v T + (E - R_v R R_v^{-1}) T_{vo}$ (14) 因此可以获得实验中相邻虚拟相机的坐标转换关 系,为

$$\begin{cases} \boldsymbol{R}' = \boldsymbol{R}_{v} \boldsymbol{R} \boldsymbol{R}_{v}^{-1} \\ \boldsymbol{T}' = \boldsymbol{R}_{v} \boldsymbol{T} + (\boldsymbol{E} - \boldsymbol{R}_{v} \boldsymbol{R} \boldsymbol{R}_{v}^{-1}) \boldsymbol{T}_{v}^{\circ} \end{cases}$$
(15)

2.4 多视角重叠区域预定位方法

通过阵列虚拟相机获取多视角图像,在预定位重

第 59 卷 第 14 期/2022 年 7 月/激光与光电子学进展

叠区域时,首先需要得到阵列虚拟相机间坐标的转换 关系,下面结合图2旋转双棱镜正向模型和图4虚拟相 机成像示意图,推导阵列虚拟相机图像坐标的转换 关系。

图 4 虚拟相机成像示意图 Fig. 4 Imaging diagram of virtual camera

假设经旋转棱镜折射后相机视轴指向的俯仰角为 ρ ,方位角为 φ ,则在旋转棱镜坐标系中,实际视轴可视 为将正投影时的光线矢量围绕单位方向矢量 $(u_x, u_y, u_z)^{T} = (-\sin \varphi, \cos \varphi, 0)^{T}旋转角度\rho, 可引入$ $Rodrigues旋转矩阵<math>R_y$ 表示此旋转变换关系:

$$\boldsymbol{R}_{v} = \boldsymbol{A}_{\boldsymbol{P}} + (\boldsymbol{I} - \boldsymbol{A}_{\boldsymbol{P}}) \cdot \cos \rho + \boldsymbol{B}_{\boldsymbol{P}} \cdot \sin \rho , \quad (16)$$

式中:I为三阶单位矩阵。A_P和B_P可表示为

$$A_{P} = \begin{bmatrix} u_{x}^{2} & u_{x}u_{y} & u_{x}u_{z} \\ u_{x}u_{y} & u_{y}^{2} & u_{y}u_{z} \\ u_{x}u_{z} & u_{y}u_{z} & u_{z}^{2} \end{bmatrix},$$
(17)
$$\begin{bmatrix} 0 & -u_{z} & u_{y} \end{bmatrix}$$

$$\boldsymbol{B}_{\boldsymbol{P}} = \begin{bmatrix} 0 & -u_z & u_y \\ u_z & 0 & -u_x \\ -u_y & u_x & 0 \end{bmatrix}^{\circ}$$
(18)

在旋转棱镜坐标系中,假设实际相机成像时的入 射光线矢量为 $A_i = (x, y, f)$,经旋转棱镜改变相机成 像视轴指向后,虚拟相机的投影光线矢量 A_{vi} 在旋转棱 镜坐标系中为

$$\boldsymbol{A}_{vi} = \boldsymbol{R}_{v} \cdot \boldsymbol{A}_{i} = \left(X_{\boldsymbol{P}i}, Y_{\boldsymbol{P}i}, Z_{\boldsymbol{P}i} \right)^{\mathrm{T}} \circ$$
(19)

因此,两个虚拟相机间重叠区域的投影光线满足

$$\boldsymbol{R}_{v1} \cdot \boldsymbol{A}_{i} = \boldsymbol{R}_{v2} \cdot \boldsymbol{A}_{j}, \qquad (20)$$

式中: R_{v1} 、 R_{v2} 表示虚拟相机与实际相机间的旋转矩阵; A_i 、 A_j 表示虚拟相机坐标系下的小孔成像的正投影光线。

在计算虚拟相机间的重叠区域时,将重叠区域简 化成矩形,首先计算两个虚拟相机坐标系中成像平面 4个角点的投影光线;然后比较两组投影光线间的夹 角,得到相对位置关系;再将交叉重叠区域的投影光线 逆运算反推到虚拟相机坐标系下;最终得到图像上重 叠区域矩形角点的像素坐标。最后在MATLAB软件 中进行仿真验证,仿真结果如图5所示,其中不同形状 的点代表不同位置视轴的指向点,不同线型的线框代表 每个位置下双目图像的交叉区域(即双目重建的区域)。

仿真的仪器参数包括棱镜折射率为1.517,棱镜楔角为 10°,棱镜间距为68.5 mm,成像深度为1500 mm,相机 平移长度为100 mm,相机焦距为35 mm,像素尺寸为 0.0044 mm,像素数量为1600×1200。仿真的双棱镜 转角组合:位置1(30°,150°),位置2(15°,165°),位置3 (0°,180°),位置4(-15°,-165°)。

3 阵列虚拟相机点云拼接方法

3.1 基于图像预定位的点云粗配准

首先调整4次旋转双棱镜的转角组合,获得一组 阵列的虚拟相机,每个位置采集一幅图像,再通过导轨 平移整个成像装置,获得相邻的一组阵列虚拟相机。 相邻阵列相机实际可以视为一组双目系统,一般将左 侧的虚拟相机坐标系作为重建点云的坐标系,获得 4幅点云。根据旋转双棱镜的正向模型,可以计算实 际相机与虚拟相机之间的转换关系(**R**_{vi}, **T**_{vi})。设一组 阵列虚拟相机中的图像采集位置1和2对应的虚拟相 机坐标系为C_{v1}和C_{v2},实际相机用C表示,虚拟相机坐 标系位置如图6所示。

图 6 虚拟相机坐标系位置示意图 Fig. 6 Position diagram of virtual camera coordinate system

对阵列虚拟相机间的转换关系进行推导。点*P*在两个虚拟相机坐标系下的坐标为*P*vi和*Pv*:

$$\begin{cases} \boldsymbol{P}_{v1} = \boldsymbol{R}_{v1}\boldsymbol{P} + \boldsymbol{T}_{v1} \\ \boldsymbol{P}_{v2} = \boldsymbol{R}_{v2}\boldsymbol{P} + \boldsymbol{T}_{v2}^{\circ} \end{cases}$$
(21)

可以得到阵列虚拟相机间的坐标关系为

 $P_{v1} = R_{v1}R_{v2}^{-1}P_{v2} + T_{v1} - R_{v1}R_{v2}^{-1}T_{v2}.$ (22) 由于对 T_v 的估计存在一定误差,因此实验中主要 通过矩阵 $R_{vi}R_{v(i+1)}^{-1}$ 对待配准点云旋转进行粗配准,以 此减小点云间的方向差异。

3.2 基于改进迭代最近点的点云精配准

在现有的点云配准方法中,迭代最近点(ICP)算 法运算简单、高效,受到了研究者的广泛关注。ICP算 法的目标是估计从一个点云到基准点云更精确、更稳 定的配准变换。尽管 ICP算法有一些缺点,例如算法 迭代过程可能陷入局部极小值,但可以集成其他算法 先进行粗配准,获取粗略变换结果作为 ICP算法的输 入再进行算法迭代,这样就能克服这些缺点并获得更 好的结果。因此,许多改进的 ICP算法被提出并应用 于实际应用中。ICP算法可大致分为4个步骤^[14]:点 选取、点匹配、点对剔除和误差最小化。将结合变视轴 成像系统模型,对其中的点选取步骤进行一些优化 改进。

点选取的目的是在保证反映点云几何特征的前提 下,提取当前点云的子点集,减少后续配准迭代的处理 点数量。在基于旋转双棱镜的变视轴成像系统中,通 过介绍多视角重叠区域预定位方法,通过双棱镜正向 模型,计算成像深度D处的视图重叠区域的角点位置, 然后在深度图中截取对应区域,结合三角测量原理,获 取重叠区域的点云。这样就可以从原始点云中获取预 定位的重叠区域点云,缩小点云配准的范围。

4 实 验

4.1 整体实验流程

实验装置包括工业相机、旋转双棱镜、直线导轨、 双棱镜控制器、导轨控制箱。在导轨上安装相机,设定 平移距离为100 mm,为简化实验,只平移一次装置,相 机移动前后可以等效为一个双目相机,标定好双目参 数;然后在相机前固定好双棱镜,在初始位置处,对视 轴进行4次调整,对应的双棱镜前、后镜转角为位置1 (30°,150°),位置2(15°,165°),位置3(0°,180°),位置4 (-15°,-165°),采集到4幅图像;最后利用导轨整体 向右平移装置100 mm,再次在四个位置采集右侧的 4幅图像。

4.2 实验结果

1) 实际相机参数标定

在相邻两个位置采集12张标定板图像,采用 Matlab软件的双目相机标定工具,获得相邻实际相机 的内外参数,如表1所示。

2) 图像采集

依次在双棱镜前、后镜转角组合(30°,150°),(15°, 165°),(0°,180°),(-15°,-165°)位置处采集,得到的 左右位置处的图像如图7所示。

3) 点云重建

采用相邻阵列虚拟相机参数校正方法,得到校正后的相邻虚拟相机阵列间的位置关系;然后利用校正好的相邻虚拟相机参数,基于三角测量原理依次对4个位置的图像进行双目重建,获得的原始点云如图8所示。

表1 相机的内外参数 Table 1 Internal and external parameters of camera

Camera internal parameter	Rotation matrix R	Translation matrix T
8119.48 0 794.29	$\begin{bmatrix} 0.9999 & -0.0082 & 0.0078 \end{bmatrix}$	-100.27
0 8119.62 643.32	0.0081 0.9999 0.0024	7.46
0 0 1	$\begin{bmatrix} -0.0079 & -0.0024 & 0.9999 \end{bmatrix}$	9.41

图 7 采集的双目图像,第一行对应角度组合为(30°, 150°),(15°, 165°),第二行对应角度组合为(0°, 180°),(-15°,-165°) Fig.7 Captured binocular images, the first row corresponds to the angle combination (30°, 150°), (15°, 165°), and the second row corresponds to the angle combination (0°, 180°), (-15°, -165°)

图 8 原始点云 Fig. 8 Original point cloud

结合多视角重叠区域预定位方法,从原始点云中 截取出三对重叠点云,对点云进行滤波和下采样,得到 的结果如图9所示。

4) 点云配准

采用ICP算法对三对重叠点云进行拼接,结果如图10~12所示,其中图10(a)~12(a)为对预定位获得的

图 9 重叠点云。(a)第一对;(b)第二对;(c)第三对 Fig. 9 Overlapping point clouds. (a) The first pair; (b) the second pair; (c) the third pair

图 10 第一对点云配准。(a)预先粗配准的 ICP 结果;(b)无粗配准的 ICP 结果

Fig.10 The first pair of point cloud registration. (a) ICP results with pre-coarse registration; (b) ICP results without coarse registration

图 11 第二对点云配准。(a)预先粗配准的 ICP 结果;(b)无粗配准的 ICP 结果

Fig. 11 The second pair of point cloud registration. (a) ICP results with pre-coarse registration; (b) ICP results without coarse registration

图 12 第三对点云配准。(a)预先粗配准的 ICP 结果;(b)无粗配准的 ICP 结果

Fig. 12 The third pair of point cloud registration. (a) ICP results with pre-coarse registration; (b) ICP results without coarse registration

第 59 卷 第 14 期/2022 年 7 月/激光与光电子学进展

相对旋转关系进行粗配准,再进行 ICP 配准的结果; 图 10(b)~12(b)是无粗配准,直接进行 ICP 配准的结果。 通过表 2 的点云配准结果可以看出,所提改进 ICP 算法(增加了预定位粗配准步骤)相较于直接采用 ICP 进行配准的方法,配准速度有 10%~20% 的提升;

同时结合图 10~12 的迭代误差可以发现,预定位粗配

准方法可以有效地减小基准点云与目标点云间的初始 距离,加快收敛速度,同时配准精度与直接采用ICP的 算法的精度相当。

根据上述配准结果,将位置2、3、4处的原始点云 依次转换到位置1坐标系下,得到的最终拼接点云如 图13所示。

Table 2Comparison of point cloud registration time				
Experiment group	Time cost of ICP /s	Time cost of proposed method $/s$	Improvement / %	
The first group	0.35	0.25	29	
The second group	0.21	0.18	14	
The third group	0.25	0.19	24	
Total	0.81	0.62	23	

表2 点云配准耗时对比

图 13 最终的拼接结果。(a)点云图;(b)点云着色图 Fig. 13 The final splicing result. (a) Point cloud diagram; (b) point cloud coloring diagram

5 结 论

针对多视角图像采集与处理过程中多相机系统布 置复杂、标定步骤繁琐等问题,基于旋转双棱镜提出了 一种阵列虚拟相机成像模型,理论推导了相邻阵列虚 拟相机位置关系的校正公式;同时基于旋转双棱镜正 向模型,提出了基于预定位重叠区域的点云配准方法。 最终实验结果很好地验证了相邻阵列虚拟相机位置关 系的校正公式的有效性;同时预定位点云重叠区域的 配准方法能够有效地减小配准的规模,粗配准也可以 缩小初始位置误差,加快配准的速度。所提系统结构 较为紧凑,虚拟相机位置关系估计简单,所提改进的点 云配准方法的配准速度有明显提升,具有一定的实际 应用价值。

参考文献

- Kim P, Chen J D, Cho Y K. SLAM-driven robotic mapping and registration of 3D point clouds[J]. Automation in Construction, 2018, 89: 38-48.
- [2] 李运舵,车进,薛澄.基于点线特征匹配的实时定位及 地图重建方法[J].激光与光电子学进展,2022,59(2): 0210003.

Li Y D, Che J, Xue C. Simultaneous localization and mapping based on point and line feature matching[J]. Laser & Optoelectronics Progress, 2022, 59(2): 0210003.

- [3] Fang J, Zhou D F, Yan F L, et al. Augmented LiDAR simulator for autonomous driving[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 1931-1938.
- [4] Zhou B, Liu Y R, Xiao Y, et al. Intelligent guidance programming of welding robot for 3D curved welding seam[J]. IEEE Access, 2021, 9: 42345-42357.
- [5] 张庆鹏,曹宇.室内场景下弱纹理物体三维重建算法的研究[J].激光与光电子学进展,2021,58(8):0810017.
 Zhang Q P, Cao Y. Research on three-dimensional reconstruction algorithm of weak textured objects in indoor scenes[J]. Laser & Optoelectronics Progress, 2021, 58(8):0810017.
- [6] 吴越.基于阵列相机的多视角光场成像关键技术研究
 [D].长沙:国防科技大学,2019.
 Wu Y. Research on key technologies of multi-view light filed imaging based on array cameras[D]. Changsha: National University of Defense Technology, 2019.
- [7] 任国印,吕晓琪,李宇豪.多摄像机视场下基于一种 DTN的多人脸实时跟踪系统[J].激光与光电子学进展, 2022,59(2):0210004.

Ren G Y, Lü X Q, Li Y H. Multi face real-time tracking system based on DTN in multi camera field of view[J]. Laser & Optoelectronics Progress, 2022, 59(2): 0210004.

[8] 刘宇.基于同步相机阵列的自动人体三维重建[D]. 杭 州:浙江大学, 2016.

第 59 卷 第 14 期/2022 年 7 月/激光与光电子学进展

Liu Y. Automatical three dimensional reconstruction of human body based on synchronized camera array[D]. Hangzhou: Zhejiang University, 2016.

- [9] 陈展翮,刘保山,付昱,等.多视角图像序列的单目三 维重建[J].信息技术与信息化,2022(1):148-150.
 Chen Z H, Liu B S, Fu Y, et al. Monocular 3D reconstruction of multi-view image sequences[J]. Information Technology and Informatization, 2022(1): 148-150.
- [10] 李良福,武彪,王楠.基于多分辨率网络的桥梁裂缝检 测方法研究[J].激光与光电子学进展,2021,58(12): 1210004.

Li L F, Wu B, Wang N. Method for bridge crack detection based on multiresolution network[J]. Laser & Optoelectronics Progress, 2021, 58(12): 1210004.

- [11] Li A H, Liu X S, Zhao Z S. Compact three-dimensional computational imaging using a dynamic virtual camera[J]. Optics Letters, 2020, 45(13): 3801-3804.
- [12] Li A H, Liu X S, Gong W, et al. Prelocation image stitching method based on flexible and precise boresight adjustment using Risley prisms[J]. Journal of the Optical Society of America A, 2019, 36(2): 305-311.
- [13] Li A H. Double-prism multi-mode scanning: principles and technology[M]. Cham: Springer, 2018.
- [14] Rusinkiewicz S, Levoy M. Efficient variants of the ICP algorithm[C]//Proceedings Third International Conference on 3-D Digital Imaging and Modeling, May 28-June 1, 2001, Quebec City, QC, Canada. New York: IEEE Press, 2001: 145-152.